Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
medRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260255

RESUMO

SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, we identified 24 individuals with neurodevelopmental delays from 18 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants showed reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicated that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 revealed that most disease-associated missense variants mapped to the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants had reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS ( SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.

2.
Gastroenterology ; 166(5): 902-914, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38101549

RESUMO

BACKGROUND & AIMS: Autosomal dominant polycystic liver disease is a rare condition with a female preponderance, based mainly on pathogenic variants in 2 genes, PRKCSH and SEC63. Clinically, autosomal dominant polycystic liver disease is characterized by vast heterogeneity, ranging from asymptomatic to highly symptomatic hepatomegaly. To date, little is known about the prediction of disease progression at early stages, hindering clinical management, genetic counseling, and the design of randomized controlled trials. To improve disease prognostication, we built a consortium of European and US centers to recruit the largest cohort of patients with PRKCSH and SEC63 liver disease. METHODS: We analyzed an international multicenter cohort of 265 patients with autosomal dominant polycystic liver disease harboring pathogenic variants in PRKCSH or SEC63 for genotype-phenotype correlations, including normalized age-adjusted total liver volumes and polycystic liver disease-related hospitalization (liver event) as primary clinical end points. RESULTS: Classifying individual total liver volumes into predefined progression groups yielded predictive risk discrimination for future liver events independent of sex and underlying genetic defects. In addition, disease severity, defined by age at first liver event, was considerably more pronounced in female patients and patients with PRKCSH variants than in those with SEC63 variants. A newly developed sex-gene score was effective in distinguishing mild, moderate, and severe disease, in addition to imaging-based prognostication. CONCLUSIONS: Both imaging and clinical genetic scoring have the potential to inform patients about the risk of developing symptomatic disease throughout their lives. The combination of female sex, germline PRKCSH alteration, and rapid total liver volume progression is associated with the greatest odds of polycystic liver disease-related hospitalization.


Assuntos
Proteínas de Ligação ao Cálcio , Cistos , Progressão da Doença , Glucosidases , Hospitalização , Hepatopatias , Chaperonas Moleculares , Proteínas de Ligação a RNA , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Hepatopatias/genética , Hepatopatias/patologia , Hepatopatias/diagnóstico por imagem , Glucosidases/genética , Hospitalização/estatística & dados numéricos , Fatores Sexuais , Cistos/genética , Cistos/diagnóstico por imagem , Cistos/patologia , Fígado/patologia , Fígado/diagnóstico por imagem , Fatores de Risco , Tamanho do Órgão , Hepatomegalia/genética , Hepatomegalia/diagnóstico por imagem , Estudos de Associação Genética , Medição de Risco , Europa (Continente) , Prognóstico , Genótipo , Estados Unidos/epidemiologia , Predisposição Genética para Doença , Índice de Gravidade de Doença
4.
Genet Med ; 25(11): 100950, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37551667

RESUMO

PURPOSE: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Micrognatismo , Transtornos do Neurodesenvolvimento , Humanos , Anormalidades Múltiplas/genética , Face , Micrognatismo/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Facies , Fenótipo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
5.
Eur J Hum Genet ; 31(10): 1154-1164, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460657

RESUMO

Iterative re-analysis of NGS results is not well investigated for published research cohorts of rare diseases. We revisited a cohort of 152 consanguineous families with developmental disorders (NDD) reported five years ago. We re-evaluated all reported variants according to diagnostic classification guidelines or our candidate gene scoring system (AutoCaSc) and systematically scored the validity of gene-disease associations (GDA). Sequencing data was re-processed using an up-to-date pipeline for case-level re-analysis. In 28/152 (18%) families, we identified a clinically relevant change. Ten previously reported (likely) pathogenic variants were re-classified as VUS/benign. In one case, the GDA (TSEN15) validity was judged as limited, and in five cases GDAs are meanwhile established. We identified 12 new disease causing variants. Two previously reported variants were missed by our updated pipeline due to alignment or reference issues. Our results support the need to re-evaluate screening studies, not only the negative cases but including supposedly solved ones. This also applies in a diagnostic setting. We highlight that the complexity of computational re-analysis for old data should be weighed against the decreasing re-testing costs. Since extensive re-analysis per case is beyond the resources of most institutions, we recommend a screening procedure that would quickly identify the majority (83%) of new variants.


Assuntos
Endonucleases , Exoma , Humanos , Consanguinidade , Custos e Análise de Custo , Endonucleases/genética
6.
Hum Mol Genet ; 32(22): 3123-3134, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37166351

RESUMO

Germline pathogenic variants in two genes encoding the lysine-specific histone methyltransferase genes SETD1A and SETD2 are associated with neurodevelopmental disorders (NDDs) characterized by developmental delay and congenital anomalies. The SETD1A and SETD2 gene products play a critical role in chromatin-mediated regulation of gene expression. Specific methylation episignatures have been detected for a range of chromatin gene-related NDDs and have impacted clinical practice by improving the interpretation of variant pathogenicity. To investigate if SETD1A and/or SETD2-related NDDs are associated with a detectable episignature, we undertook targeted genome-wide methylation profiling of > 2 M CpGs using a next-generation sequencing-based assay. A comparison of methylation profiles in patients with SETD1A variants (n = 6) did not reveal evidence of a strong methylation episignature. A review of the clinical and genetic features of the SETD2 patient group revealed that, as reported previously, there were phenotypic differences between patients with truncating mutations (n = 4, Luscan-Lumish syndrome; MIM:616831) and those with missense codon 1740 variants [p.Arg1740Trp (n = 4) and p.Arg1740Gln (n = 2)]. Both SETD2 subgroups demonstrated a methylation episignature, which was characterized by hypomethylation and hypermethylation events, respectively. Within the codon 1740 subgroup, both the methylation changes and clinical phenotype were more severe in those with p.Arg1740Trp variants. We also noted that two of 10 cases with a SETD2-NDD had developed a neoplasm. These findings reveal novel epigenotype-genotype-phenotype correlations in SETD2-NDDs and predict a gain-of-function mechanism for SETD2 codon 1740 pathogenic variants.


Assuntos
Cromatina , Transtornos do Neurodesenvolvimento , Humanos , Cromatina/genética , Metilação de DNA/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Estudos de Associação Genética , Códon
7.
Am J Hum Genet ; 110(6): 998-1007, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207645

RESUMO

While common obesity accounts for an increasing global health burden, its monogenic forms have taught us underlying mechanisms via more than 20 single-gene disorders. Among these, the most common mechanism is central nervous system dysregulation of food intake and satiety, often accompanied by neurodevelopmental delay (NDD) and autism spectrum disorder. In a family with syndromic obesity, we identified a monoallelic truncating variant in POU3F2 (alias BRN2) encoding a neural transcription factor, which has previously been suggested as a driver of obesity and NDD in individuals with the 6q16.1 deletion. In an international collaboration, we identified ultra-rare truncating and missense variants in another ten individuals sharing autism spectrum disorder, NDD, and adolescent-onset obesity. Affected individuals presented with low-to-normal birth weight and infantile feeding difficulties but developed insulin resistance and hyperphagia during childhood. Except for a variant leading to early truncation of the protein, identified variants showed adequate nuclear translocation but overall disturbed DNA-binding ability and promotor activation. In a cohort with common non-syndromic obesity, we independently observed a negative correlation of POU3F2 gene expression with BMI, suggesting a role beyond monogenic obesity. In summary, we propose deleterious intragenic variants of POU3F2 to cause transcriptional dysregulation associated with hyperphagic obesity of adolescent onset with variable NDD.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Síndrome de Prader-Willi , Adolescente , Humanos , Transtorno do Espectro Autista/genética , Hiperfagia/genética , Hiperfagia/complicações , Transtornos do Neurodesenvolvimento/genética , Obesidade/complicações , Síndrome de Prader-Willi/complicações , Síndrome de Prader-Willi/genética , Proteínas
8.
J Clin Invest ; 133(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36976648

RESUMO

Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.


Assuntos
Ceramidas , Esfingolipídeos , Humanos , Ceramidas/metabolismo , Homeostase , Mutação , Esfingolipídeos/genética , Esfingolipídeos/metabolismo
10.
Front Immunol ; 14: 1094862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776892

RESUMO

Introduction: Antibody mediated rejection (ABMR) is the most common cause of long-term allograft loss in kidney transplantation (KT). Therefore, a low human leukocyte antigen (HLA) mismatch (MM) load is favorable for KT outcomes. Hitherto, serological or low-resolution molecular HLA typing have been adapted in parallel. Here, we aimed to identify previously missed HLA mismatches and corresponding antibodies by high resolution HLA genotyping in a living-donor KT cohort. Methods: 103 donor/recipient pairs transplanted at the University of Leipzig Medical Center between 1998 and 2018 were re-typed using next generation sequencing (NGS) of the HLA loci -A, -B, -C, -DRB1, -DRB345, -DQA1, -DQB1, -DPA1, and -DPB1. Based on these data, we compiled HLA MM counts for each pair and comparatively evaluated genomic HLA-typing with pre-transplant obtained serological/low-resolution HLA (=one-field) typing results. NGS HLA typing (=two-field) data was further used for reclassification of de novo HLA antibodies as "donor-specific". Results: By two-field HLA re-typing, we were able to identify additional MM in 64.1% (n=66) of cases for HLA loci -A, -B, -C, -DRB1 and -DQB1 that were not observed by one-field HLA typing. In patients with biopsy proven ABMR, two-field calculated MM count was significantly higher than by one-field HLA typing. For additional typed HLA loci -DRB345, -DQA1, -DPA1, and -DPB1 we observed 2, 26, 3, and 23 MM, respectively. In total, 37.3% (69/185) of de novo donor specific antibodies (DSA) formation was directed against these loci (DRB345 ➔ n=33, DQA1 ➔ n=33, DPA1 ➔ n=1, DPB1 ➔ n=10). Conclusion: Our results indicate that two-field HLA typing is feasible and provides significantly more sensitive HLA MM recognition in living-donor KT. Furthermore, accurate HLA typing plays an important role in graft management as it can improve discrimination between donor and non-donor HLA directed cellular and humoral alloreactivity in the long range. The inclusion of additional HLA loci against which antibodies can be readily detected, HLA-DRB345, -DQA1, -DQB1, -DPA1, and -DPB1, will allow a more precise virtual crossmatch and better prediction of potential DSA. Furthermore, in living KT, two-field HLA typing could contribute to the selection of the immunologically most suitable donors.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Teste de Histocompatibilidade/métodos , Cadeias beta de HLA-DQ/genética , Genômica
11.
Comput Struct Biotechnol J ; 21: 1077-1083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36789265

RESUMO

The widespread use of high-throughput sequencing techniques is leading to a rapidly increasing number of disease-associated variants of unknown significance and candidate genes. Integration of knowledge concerning their genetic, protein as well as functional and conservational aspects is necessary for an exhaustive assessment of their relevance and for prioritization of further clinical and functional studies investigating their role in human disease. To collect the necessary information, a multitude of different databases has to be accessed and data extraction from the original sources commonly is not user-friendly and requires advanced bioinformatics skills. This leads to a decreased data accessibility for a relevant number of potential users such as clinicians, geneticist, and clinical researchers. Here, we present aRgus (https://argus.urz.uni-heidelberg.de/), a standalone webtool for simple extraction and intuitive visualization of multi-layered gene, protein, variant, and variant effect prediction data. aRgus provides interactive exploitation of these data within seconds for any known gene of the human genome. In contrast to existing online platforms for compilation of variant data, aRgus complements visualization of chromosomal exon-intron structure and protein domain annotation with ClinVar and gnomAD variant distributions as well as position-specific variant effect prediction score modeling. aRgus thereby enables timely assessment of protein regions vulnerable to variation with single amino acid resolution and provides numerous applications in variant and protein domain interpretation as well as in the design of in vitro experiments.

12.
Clin Genet ; 103(2): 226-230, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36189577

RESUMO

NSD2 dimethylates histone H3 at lysine 36 (H3K36me2) and is located in the Wolf-Hirschhorn syndrome (WHS) critical region. Recent descriptions have delineated loss-of-function (LoF) variants in NSD2 with a distinct disorder. The oncogenic missense variant p.Glu1099Lys occurs somatically in leukemia and has a gain-of-function (GoF) effect. We describe two individuals carrying p.Glu1099Lys as heterozygous de novo germline variant identified by exome sequencing (ES) of blood DNA and subsequently confirmed in two ectodermal tissues. Clinically, these individuals are characterized by intellectual disability, coarse/ square facial gestalt, abnormalities of the hands, and organomegaly. Public cell lines with NSD2 GoF variants had increased K36me2, DNA promoter methylation, and dysregulated RNA expression. NSD2 GoF caused by p.Glu1099Lys is associated with a novel phenotype different from WHS and Rauch-Steindl syndrome (RAUST).


Assuntos
Proteínas Repressoras , Síndrome de Wolf-Hirschhorn , Humanos , Proteínas Repressoras/genética , Mutação com Ganho de Função , Histonas/genética , Histonas/metabolismo , Síndrome de Wolf-Hirschhorn/genética , DNA
13.
Am J Med Genet A ; 191(2): 469-478, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36426740

RESUMO

The non-POU domain-containing octamer-binding (NONO) protein is involved in multiple steps of gene regulation such as RNA metabolism and DNA repair. Hemizygous pathogenic variants in the NONO gene were confirmed to cause a rare X-linked syndromic disorder. Through our in-house diagnostics and subsequent matchmaking, we identified six unrelated male individuals with pathogenic or likely pathogenic NONO variants. For a detailed comparison, we reviewed all published characterizations of the NONO-associated disorder. The combined cohort consists of 16 live-born males showing developmental delay, corpus callosum anomalies, non-compaction cardiomyopathy and relative macrocephaly as leading symptoms. Seven prenatal literature cases were characterized by cardiac malformations. In this study, we extend the phenotypic spectrum through two more cases with epilepsy as well as two more cases with hematologic anomalies. By RNA expression analysis and structural modeling of a new in-frame splice deletion, we reinforce loss-of-function as the pathomechanism for the NONO-associated syndromic disorder.


Assuntos
Cardiomiopatias , Cardiopatias Congênitas , Humanos , Masculino , Proteínas de Ligação a DNA/genética , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Cardiomiopatias/genética , Genes Ligados ao Cromossomo X , RNA , Proteínas de Ligação a RNA/genética
14.
Eur J Med Genet ; 66(1): 104669, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36379434

RESUMO

Only few copy number variants at chromosome 19p13.11 have been reported, thus associated clinical information is scarce. Proximal to these copy number losses, we now identified deletions in five unrelated individuals with neurodevelopmental disorders. They presented with psychomotor delay as well as behavioral and sleeping disorders, while complex cardiovascular, skeletal, and various other malformations were more variable. Dysmorphic features were rather unspecific and not considered as a recognizable gestalt. Neither of the analyzed parents carried their offsprings' deletions, indicating de novo occurrence. The deletion sizes ranged between 0.7 and 5.2 Mb, were located between 18 and 24 megabases from the telomere, and contained a variable number of protein-coding genes (n = 25-68). Although not all microdeletions shared a common region, the smallest common overlap of some of the deletions provided interesting insights in the chromosomal region 19p13.11p12. Diligent literature review using OMIM and Pubmed did not identify a satisfying candidate gene for neurodevelopmental disorders. In the literature, a de novo in-frame deletion in MAU2 was considered pathogenic in an individual with Cornelia de Lange syndrome. Therefore, the clinical differential diagnosis of this latter syndrome in one individual and the encompassment of MAU2 in three individuals' deletions suggest clinical and genetic overlap with this specific syndrome. Three of the four here reported individuals with deletion encompassing GDF1 had different congenital heart defects, suggesting that this gene's haploinsufficiency might contribute to the cardiovascular phenotype, however, with reduced penetrance. Our findings indicate an association of microdeletions at 19p13.11/ 19p13.11p12 with neurodevelopmental disorders, variable symptoms, and malformations, and delineate the phenotypic spectrum of deletions within this genomic region.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 19 , Transtornos do Neurodesenvolvimento , Humanos , Cromossomos Humanos Par 19/genética , Síndrome de Cornélia de Lange/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Telômero/genética
15.
Genet Med ; 25(1): 49-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322151

RESUMO

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Camundongos , Animais , Humanos , Metilação de DNA/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , DNA , Mutação
16.
Eur J Hum Genet ; 30(12): 1413-1422, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100708

RESUMO

Hereditary chronic kidney disease (CKD) appears to be more frequent than the clinical perception. Exome sequencing (ES) studies in CKD cohorts could identify pathogenic variants in ~10% of individuals. Tubulointerstitial kidney diseases, showing no typical clinical/histologic finding but tubulointerstitial fibrosis, are particularly difficult to diagnose. We used a targeted panel (29 genes) and MUC1-SNaPshot to sequence 271 DNAs, selected in defined disease entities and age cutoffs from 5217 individuals in the German Chronic Kidney Disease cohort. We identified 33 pathogenic variants. Of these 27 (81.8%) were in COL4A3/4/5, the largest group being 15 COL4A5 variants with nine unrelated individuals carrying c.1871G>A, p.(Gly624Asp). We found three cysteine variants in UMOD, a novel missense and a novel splice variant in HNF1B and the homoplastic MTTF variant m.616T>C. Copy-number analysis identified a heterozygous COL4A5 deletion, and a HNF1B duplication/deletion, respectively. Overall, pathogenic variants were present in 12.5% (34/271) and variants of unknown significance in 9.6% (26/271) of selected individuals. Bioinformatic predictions paired with gold standard diagnostics for MUC1 (SNaPshot) could not identify the typical cytosine duplication ("c.428dupC") in any individual, implying that ADTKD-MUC1 is rare. Our study shows that >10% of selected individuals carry disease-causing variants in genes partly associated with tubulointerstitial kidney diseases. COL4A3/4/5 genes constitute the largest fraction, implying they are regularly overlooked using clinical Alport syndrome criteria and displaying the existence of phenocopies. We identified variants easily missed by some ES pipelines. The clinical filtering criteria applied enriched for an underlying genetic disorder.


Assuntos
Nefrite Hereditária , Nefrite Intersticial , Insuficiência Renal Crônica , Humanos , Prevalência , Nefrite Hereditária/genética , Nefrite Intersticial/epidemiologia , Nefrite Intersticial/genética , Nefrite Intersticial/diagnóstico , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Mutação
17.
Hum Mutat ; 43(12): 1795-1807, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35998261

RESUMO

Routine exome sequencing (ES) in individuals with neurodevelopmental disorders (NDD) remains inconclusive in >50% of the cases. Research analysis of unsolved cases can identify novel candidate genes but is time-consuming, subjective, and hard to compare between labs. The field, therefore, requires automated and standardized assessment methods to prioritize candidates for matchmaking. We developed AutoCaSc (https://autocasc.uni-leipzig.de) based on our candidate scoring scheme. We validated our approach using synthetic trios and real in-house trio ES data. AutoCaSc consistently (94.5% of all cases) scored the relevant variants in valid novel NDD genes in the top three ranks. In 93 real trio exomes, AutoCaSc identified most (97.5%) previously manually scored variants while evaluating additional high-scoring variants missed in manual evaluation. It identified candidate variants in previously undescribed NDD candidate genes (CNTN2, DLGAP1, SMURF1, NRXN3, and PRICKLE1). AutoCaSc enables anybody to quickly screen a variant for its plausibility in NDD. After contributing >40 descriptions of NDD-associated genes, we provide usage recommendations based on our extensive experience. Our implementation is capable of pipeline integration and therefore allows the screening of large cohorts for candidate genes. AutoCaSc empowers even small labs to a standardized matchmaking collaboration and to contribute to the ongoing identification of novel NDD entities.


Assuntos
Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Exoma , Sequenciamento do Exoma , Ubiquitina-Proteína Ligases/genética
18.
iScience ; 25(8): 104785, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35982790

RESUMO

The human genome contains more than one million tandem repeats (TRs), DNA sequences containing multiple approximate copies of a motif repeated contiguously. TRs account for significant genetic variation, with 50 + diseases attributed to changes in motif number. A few diseases have been to be caused by small indels in variable number tandem repeats (VNTRs) including poly-cystic kidney disease type 1 (MCKD1) and monogenic type 1 diabetes. However, small indels in VNTRs are largely unexplored mainly due to the long and complex structure of VNTRs with multiple motifs. We developed a method, code-adVNTR, that utilizes multi-motif hidden Markov models to detect both, motif count variation and small indels, within VNTRs. In simulated data, code-adVNTR outperformed GATK-HaplotypeCaller in calling small indels within large VNTRs. We used code-adVNTR to characterize coding VNTRs in the 1000 genomes data identifying many population-specific variants, and to reliably call MUC1 mutations for MCKD1.

19.
Clin Genet ; 102(6): 517-523, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35908153

RESUMO

TCF4 haploinsufficiency by deletions, truncating variants or loss-of-function missense variants within the DNA-binding and protein interacting bHLH domain causes Pitt-Hopkins syndrome (PTHS). This neurodevelopmental disorder (NDD) is characterized by severe intellectual disability (ID), epilepsy, hyperbreathing and a typical facial gestalt. Only few aberrations of the N-terminus of TCF4 were associated with milder or atypical phenotypes. By personal communication and searching databases we assembled six cases with the novel, recurrent, de novo missense variant c.1165C > T, p.(Arg389Cys) in TCF4. This variant was identified by diagnostic exome or panel sequencing and is located upstream of the bHLH domain. All six individuals presented with moderate to severe ID with language impairment. Microcephaly occurred in two individuals, epilepsy only in one, and no breathing anomalies or myopia were reported. Facial gestalt showed some aspects of PTHS but was rather non-specific in most individuals. Interestingly, the variant is located within the AD2 activation domain next to a highly conserved coactivator-recruitment motif and might alter interaction with coactivator proteins independently from the bHLH domain. Our findings of a recurrent missense variant outside the bHLH domain in six individuals with an ID phenotype overlapping with but not typical for PTHS delineate a novel genotype-phenotype correlation for TCF4-related NDDs.


Assuntos
Epilepsia , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Fator de Transcrição 4/genética , Facies , Hiperventilação/diagnóstico
20.
Kidney Int ; 102(2): 405-420, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35643372

RESUMO

Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD) is caused by mutations in one of at least five genes and leads to kidney failure usually in mid adulthood. Throughout the literature, variable numbers of families have been reported, where no mutation can be found and therefore termed ADTKD-not otherwise specified. Here, we aim to clarify the genetic cause of their diseases in our ADTKD registry. Sequencing for all known ADTKD genes was performed, followed by SNaPshot minisequencing for the dupC (an additional cytosine within a stretch of seven cytosines) mutation of MUC1. A virtual panel containing 560 genes reported in the context of kidney disease (nephrome) and exome sequencing were then analyzed sequentially. Variants were validated and tested for segregation. In 29 of the 45 registry families, mutations in known ADTKD genes were found, mostly in MUC1. Sixteen families could then be termed ADTKD-not otherwise specified, of which nine showed diagnostic variants in the nephrome (four in COL4A5, two in INF2 and one each in COL4A4, PAX2, SALL1 and PKD2). In the other seven families, exome sequencing analysis yielded potential disease associated variants in novel candidate genes for ADTKD; evaluated by database analyses and genome-wide association studies. For the great majority of our ADTKD registry we were able to reach a molecular genetic diagnosis. However, a small number of families are indeed affected by diseases classically described as a glomerular entity. Thus, incomplete clinical phenotyping and atypical clinical presentation may have led to the classification of ADTKD. The identified novel candidate genes by exome sequencing will require further functional validation.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Adulto , Testes Genéticos , Estudo de Associação Genômica Ampla , Humanos , Mutação , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...